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INTRODUCTION

,/' Optical surveillance sensors are sometimes subject to static noise pro-
cesses which can adversely affect the optimal processing of their resulting
imagery. For example, image intensity values derived from line outages, dead
pixels, ‘“popcornﬁoise and other such noise mechanisms will contaminate both
local and global estimates of the power spectrum density, probability density
function and other key statistical properties inherent to the original ob-
served scene. If these estimates are used to derive optimum filters for
detecting specific targets in said imagery or registering sequences of images,
poor processing performance could result. References 1 through 7 provide
excellent reviews of current image processing trends dependent on good quality
pictures and illustrate their utility for enhancing the inherent information
content found in remotely sensed images such as those taken by the LANDSAT and
NIMBUS-7 satellites, They also show the effect of noisy pixels on these
techniques and the types of performance degradations incurred; which can be
significant. This suggests that methods for replacing the wpag” pixel values
with numbers commensurate with the inherent statistics of a detected image can
be important to optimum image processing in many applications. pp—

The standard techniques for replacing bad pixels 1s to replace their
recorded values with the scene mean intensity value, or to average the eight
intensity values surrounding the bad pixel and substitute the results for the
incorrect values, Unfortunately these methods do not necessarily take into
account the spatial coherence properties of tne inherent surface clutter and
may not give the best representation of the true intensity values which should
be there. The intent of this report is to describe the potential merits of
three nonlinear estimation techniques for replacing noisy pixels in computer
contaminated DAEDALUS 1magery. The performance of these techniques will be
benchmarked against the neighborhood averaging technique cited above.
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PROBLEM APPROACH

During the past decade several nonlinear estimation techniques have been
used to smooth spiky noise-contaminated time series and optical~image data,
and their success has been reported in references 5, 6, and 8-10,. Median
filters have emerged as one of the best methods found since they are effective
in estimating reasonable insertion values, while still preserving any mono-
tonic step edges present in the data (8). However, these filters and other
similar data estimators do contaminate the basic intensity statistics and this
can affect subsequent multispectral or time series data processing in some
nonlinear fashion, This can be especially detrimental when strong image-to-~
image correlations are desired (11), The question is, "which nonlinear data
estimator provides the best data representation after application?” In an
attempt to answer this question, three popular nonlinear data filtering tech-
niques were assessed in their ability to correct computer contaminated
DAEDALUS imagery of significant outliers, with and without a bad pixel locali-~
zation routine, and create reasonably accurate renditions of the uncontamin-
ated scenes. The benchmark performance levels were assumed to be those
obtainable from linear filtering using a neighborhood average and replacement
technique on the same noisy imagery. In the next two subsections, noisy pixel
replacement estimators, specific DAEDALUS imagery, and detailed experimental
procedures used in this investigation will be described.

PROPOSED NOISY PIXEL REPLACEMENT ESTIMATORS

Four data replacement estimators were assumed for this work; the first a
linear technique and the last three were of a nonlinear nature: namely

Neighborhood Averaging Filter
Biweight Filter

Median Filter

Four Way Median Filter

This subsection provides a detailed description of each. Each filter operates
on the nine pixels found in a 3x3 pixel window about the pixel to be replaced
and these pixels are denoted in the following matrix form:

x{i-1,3-1) x (i-1,3) X(i-1,3+1)
x(i,j=-1) x(1,3) x(1,3+1)
x(i+1,3-1) x(1+1,3) x(1+1,3+1)

In the above matrix, x(1i,j) 1is the candidate pixel to bhe replaced. For the
biweight and median filters, these nine values were passed to a sorting
routine (SHELLSORT) so they could be assembled 1n low to high order. The
other two filters did not require sorting and no other additional prefiltering
operations were imposed.

Neighborhood Averaging Replacement Filter

The neighborhood averaging replacement filter 1s one which sums the aapli-
tude values of the eight array elements surrounding x{1,j) and Jdivides the
result by eight to yield the replacement value for x{1,)). This computation
is similar to a local neighborhood mean estimate, except that tne center ele-
ment is missing from the calculation. The eftectiveness of this estimation

POV 4

AN
A_ s

..
20,0,

S

7,',',‘f':4

3
..

7,

v ’, "' ". ."‘, Y

EAE R i
R PN

»
»
-
-
L)




-
.
.
o
»
]

o=

method is dependent upon the percentage of noise inherent in the image, the
spatial variability of the scene, and whether some sort of noisy pixel screen-
ing procedure is applied to determine the need for filtering, Since this is
the benchmark technique for the study, these points will be discussed 1in
greater detail.

Most infrared and optical imagery are Markov-like random processes and
have autocovariance functions with envelopes which fall off exponentially over
some linear distance(s). If the clutter level of the image is low, a bad
pixel replacement can result because of either the presence of outliers, or
rapid decay of the spatial covariance. This latter situation implies the
spatial variability of the scene is high, such as an image of a city or other
such cluttered terrain. A noisy pixel test can minimize the occurrence of the
former, but nothing can really be done about the former without more informa-
tion. If the autocovariance of images falls off slowly, which implies slowly
varying clutter fields, bad pixel replacement will most likely only occur with
ocutliers present, Here again a noisy pixel test will help minimize efforts in
pixel replacement.

When the noise level is high, bad pixel replacements can occur because
the mean and standard deviations derived from the imagery may replace good
values with bhad or pass noisy pixels off as good. This is especially possible
when the spatial variability of the clutter is high, Obviously, a noisy pixel
test may not improve anything at all if its value cannot be easily determined
by the chosen test,

Given the above, nonlinear estimation techniques sufter the same problems
and/or to the same degree. This is the objective of the study and will be the
aspect 1nvestigated in some detail 1n the sections to come.

Biweight Filter

For every pixel in an image of 1interest, an ordered nine element string
ot intensities,

X(1)<x(2)<x{3) eea<x(B)<x(9),

18 passed to tie biweight filter suhbroutine (BIWEIGHY) tor pixel replacement.
The first operation performed is to calcalate the stringy standard deviation
based upon the interquartile values x(3) and x(7), 1.e., the subroutine
computes

standard deviation (sD) = [x(7)-x(3)1/1.349; for x(7).ne.x(3) (1a)

1.483 (=1/.674%) tor x(7).eq.x(3). (1b)

The  subroutine then derives an estimated mean using those elements 1n  the

string withmn tive srandard deviations ot the median element x(S). Mathe-
miticaily the progran caloulates
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3 x(i)*rectix(1)-x(5))/(10*sD)) 7]

X = 1 (2)

9 -

. -

2: rect[(x)(i)=-x(5))/10*SD)] i

1 #

where X is the estimated mean and rect(z) is the rectangular function given by &
rect(z) = 1; for abs(z)<i/2 . -~

= 0; otherwise, X

This particular form of mean estimate allows one to derive an estimated mean ; ;t
devoid of significant outliers which would contaminate the estimate. ! N
|

A weighting function is then calculated using the formula =
w(i)=[1-[(x(1)=X)/(6%*SD)]**2]**2 (3) -

for [(x(i)=X)/(6*SD)] **2 > 1.0 the term becomes 1.0 and w(i) = 0. A new ?
estimate of the mean is computed through the relation <
9 _':

. . r.

Z x(1)*w(i) el

X = i (4) o

9 .

3 wii) 3

i =

and this number replaces the array element x(i,j). This technique has been 5
suggested as a more robust means of smoothing noisy data sets than the median v J
filter [12]) and this assertion will be evaluated in the study. =
Median Filter -
For every pixel in an image of interest, an ordered nine element string <

of intensities, -
}4

x(1)<x(2)<x(3)..e¢<x(8B)<x(9), -
is passed to the median filter subroutine and the median string element x(5) ‘ ﬁ‘
is substituted for x(i,j). The major advantage of median filtering 1is that ¢ e
constant backgrounds, slopes and edges are preserved, while isolated pulses } .
less than or equal to m=(n-1)/2 are suppressed, n being the lenath of the data }:
string and equal to 9 1n this case. , X
Four-way Median Filter o
o

N

The four-way median filter is a filtering routine which applies a one- .
dimensional median filter in the north-south, east-west, southwest-northeast :i

and northwest-southeast directions sequentially, Pictorially, the tilter

operates in the following sequence order: )
o

4 1 3 -

2 * 2 i

w
—_
oS

~ AN,

-"u.‘; ‘;- ;..-.. A .._'-‘_ .- .
LTSRN HLSTAT L E WO - N




.U
o,
~

L

Although this filter only operates on three-pixel strings at any one pass,
this pixel estimation technique requires a larger initial array size upon
which to operate than the previous techniques. This is because the subroutine
performs an in-place four-way filtering operation and the resulting array size
trom each pass is reduced by 2 rows and 2 columns.
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Unlike the neighborhood average and biweight filters previously de-
scribed, this method does not replace array elements with computed values, but
rather replaces them with one of the nine original pixel values. The replace-

. ment may ke a good or noisy pixel, depending on its relationship to its adja-~
cent neighbors on each pass, and whether a bad pixel test is applied. Tech-
nically, this type of filter derives a proper replacement only when one noisy

- pixel exists in any chosen 3x3 pixel array and may make an error otherwise if

. more than one outlier exists in these windows. Cleafly the particular posi-

tion of the noisy pixels relative to the order sequence of the filter will 4

define whether an error is made or not., For example, all the pixels in the )
3x3 matrix could be noisy except for the upper left and the lower right cor-
ners. On the fourth pass, a good replacement would occur.
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TEST IMAGERY

'The test imagery chosen for this investigation is a set of 512x512x8 bits

DAEDALUS derived images provided by E.M. Winter of Technical Research Asso- oo

ciates [(13). The DAEDALUS sensor was flown in the NASA/AMES U-2 over San ~3
’

- Francisco Bay and points south on 14 September 1983, and specific locations
interrogated included san Jose, Santa Cruz, Monterey Bay and Point Mugu,
California. The images used in this study were from the channel 5 segment and
possess an individual pixel field-of-view of approximately 28 meters, More
information on this flight can he obtained by contacting Dr. Winter at (805)
987-1972 1n care ot Technical Research Associates, Inc., 445 Rosewood Avenue, -3
Suite H, Camarillo, calitornia 93010,

1This set was chosen because of the diversity of terrain recorded, 1i.e.,
the range of spatial variability interrogated, The six images selected tor
the 1nvestigation were:

. 1. Lower san Francisco Bay (SF1):85s bay, 15% city and flatlands

Northern san Jose (5F2):85% city, 15% bay

Downtown san Jose (SF3):95% city, 5% tlatlands

Santa Cruz Mountains (SF6):100% mountains

: b.  Santa Cruz (sF8):3U% city, 70% ocean

Ocean and clouds 0ff Santa Cruz (SF11):30% ocean, 70% clouds
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These images are shown in their uncontaminated form in appendix B. In the
work to be described, two versions of the above imagery were used. One ver-
sion used the calibrated DAEDALUS imagery directly in the study. Unfortu-
nately, most of the images possessed pixel values between 30 and 120, and tnis
gave a very low contrast image on the AED512 displays used. To alleviate this
problem, a second version was created which had the six images minimum/maximum
scaled into an 8 bit-digitized intensity form, i.e., the minimum value of the
image was set to 0, and the maximum value set to 255 and the rest of the pixel -
values were sorted into the 254-integer levels in between. This allowed bet-
ter definition on the display and a better sense of reality to the viewer.
However, it does affect the inherent image statistics in a nonlinear way.

0 L F T SN B W N T T TR T e T e RS AR T

Figure 1 1illustrates the resulting intensity histograms for lower 34an
Francisco Bay scene, It is apparent that the figure possesses very similar
envelopes, as one would expect. The scaled DAEDALUS histogram 1s simply an
expanded version of the unscaled DAEDALUS by a tactor 2.83. All of the
. DAEDALUS 1imagery used 1in this study exhibited similar type scaling. The 1m-
: pact of this scaling is that the scaled images will produce much larger difter-
. ence variances than the unscaled images when both are subjected tn the same
Y statistical manipulation. However, this 1s an artificial difference. The
relative performance of the various filters on the two 1mage versions 1s the
. same and one will be able to draw the same conclusions by focusing upon one or
. the other set., In other words, absolute variances derived from uanscaled
results should not be compared with those obtained from scaled results,

RAW SCALED "
- &
. "
. > > .
\ o (&) .
\ z 5 -
w
=) 2 <
ad a -
w [¥9) .
i< x
w W
.
) 0 30 120 255 0 255 o
INTENSITY INTENSITY ~d
o
Figure 1. Intensity histograms for raw and scaled lower San Francisco Bay o

DAEDALUS images.




EXPERIMENTAL PROCEDURE

Programs (see appendix C) were written to allow the operator to select an
image, read it into memory, offset the entire image from zero by +300, and
allow selection of the following options:

I

e Introduction of Gaussian noise: percent, mean, and sigma of noise
e Bad pixel check (skip or perform)

® Number of sigmas from the mean of the selected neighborhood (for bad
pixel check)

® Neighborhood size; 3x3, 5x5, 7x7, 9x9, 11x11 (for bad pixel check)

After selection of these options, the program introduced noise or not,
then displayed the mean and sigma of the difference between the original and
noise contaminated images. The program then either skipped or performed the
bad pixel check on a 452x452 subset of the original image. If the bad pixel
check was desired, the mean and sigma of the selected neighborhood around the
pixel was compared with the value of the pixel itself, and if it was within
the selected number of sigmas from the neighborhood mean, it was determined to
be a good pixel, and would not have to be filtered.

1f the bad pixel check was skipped, then every pixel was filtered; when
the bad pixel check was performed, only the outlier pixels had the filtering
technique applied.

Afttar the application of the selected filtering algorithm, the program
displayed the correlation coefficient between the original and the filtered
images, the mean and sigma of the difference between the original and the
filtered images, the percent of noise contamination selected, and the mean and
sigma of the added noise. In addition, the numbers of pixels replaced by
noise and the number of pixels corrected by the filter were displayed. The
number ot noise pixels corrected and the number of good pixels disturbed were
also displayed.

NOISE REPLACEMENT

The procedure for noise replacement was first to move the range of the
pixel values ftrom 0-255 to 300-555 for the scaled DAEDALUS images, and from
approximately 30~120 to 330-420 for the original DAEDALUS images. This was
done by adding 300 to every pixel value after the image was taken from disk.
By this method, the introduction of gaussian noise with a nean of 0.0 and a
sigma of 5.0 would nake the noise distinctive from the original pixel values.
Moirse values replacing original image valiaes were then ~20 teo +20, with the
majority close to zern,
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The actual noise replacement was done randomly over a 462x462 subset of
the 512x512 image. This allowed the actual experimental window of 452x452,
over which the bad pixel check and the filtering would occur, to be well with-
in the noise-contaminated area. For the four-way median filter, the contami-
nated area was slightly larger, 468x468, due to the added size of the image
required, as the filter shrinks the image by two rows and columns for each of
the four filter passes, resulting finally in the standard 452x452 image. As a
result, the percentage of noise replacement appears to be less than that of
the other filtering algorithms; on the other hand since the four-way median -
filter makes four passes; the percentage of noise dealt with is equal in per-
cent to the noise dealt with by the other filtering methods.

a

As the program was repeated for different percentages of noise and with
and without the bad pixel check, and for six different images, the random
stream was always the same so that no one filter was given a different, or
perhaps adverse set of noise upon which to work.

. The program allows replacement with Gaussian means and sigmas other than
0.0 and 5.0. The decision to use these values was based upon the need to use
noise that was different from the original image pixel values, and thus stand
out.

Noise replacement values used in the experiment were 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 19, 20, and 30 percent. Zero percent was selected so that a gauge
. could be established on how much the particular filter would disturb the image
' when there was no noise replacement. By careful examination of the original
DAEDALUS images, flaws were discovered in the scanning sensor output in every
image. Therefore, it is reasonable to assume that in every filtering action,
¢ some of this "noise" would be replaced.

BAD PIXEL CHECK

The program allows for two variations in the bad pixel check; first, to
skip it completely, and second to vary the number of sigmas.

If the bad pixel check is skipped, then the filter is applied to every
pixel of the image, which for a 4%2x452 image is 204,304 pixels. This is the
maximum work for the filter, and the test of how well or badly the filter
performs in correcting the noisy pixels and not disturbing too many of the
good pixels,

The second variation, the number of sigmas, determines how much work thne
) filter does. During the bad pixel check, the sigma and mean are computed for
the selected neighborhood (3x3, 5x5, 7x7, 9x9, or 11x11) around tne pixel v
which is a candidate for filtering. If the candidate pixel is within plus or
minus the selected number of sigmas from the mean, the pixel 1s considered
good and does not require filtering. If it falls beyond the selected number
of sigmas about the mean, then the pixel 1is a candidate for filtering. By
reducing the number of sigmas, more filtering is achieved; by increasing the
number of sigmas; filtering 1s reduced,

If the filtering is reduced, less harm is done when the candidate pixel
is one of the original image pixels, but when the randidate pixel is a noisy
pixel, then it may escape detection as a bad pixel when the number of sigmas
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is high (i.e., 3.0 or more). On the other hand, when the number of sigmas 1is
low (making the good pixel window smaller) more pixels will be filtered; some
good and some of the noisy pixels. This is the tradeoff in using the bad
pixel check; a number of sigmas has to be selected which will detect the noisy
yet not filter the good pixels. Several of the filters, by nature of their
design, tend to do less harm to good pixels, and have more success with elimi-
nation of noisy pixels. These are the median and four-way median filters.
These filters do not arithmetically modify pixel values; but by the process of
elimination move pixels around. Noise pixels become the outliers and pixels
within the neighborhood of the candidate pixel take the place of the noisy
pixel. The neighboring pixels are not the same as the replaced pixel, but are
very close to its value if the gradient of the neighborhood is low.

BAD PIXEL CHECK NEIGHBORHOOD

Another variable tor the bad pixel check is the neighborhood of the candi-
date pixel. The operator is given the opportunity of selecting 3x3, 5x5, 7x7,
Ix9, or 11x11 submatrix for the neighborhood. During the bad pixel check, the
pixels in the submatrix selected are averaged, while at the same time the
standard deviation of the neighborhood is computed. Then the candidate pixel
is checked to see if it is within plus or minus the number of sigmas around
the mean. It so, the pixel is considered good; if not, it is filtered. The
size of the neiyhborhood affects the outcome of the bad pixel check; if the
neighborhood 1s small, one or two bad pixels in the neighborhood can contrib-
ute to the mean and standard deviation in such a way as to bias the true mean
of the neighborhood. This 1s shown in figure 2,
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Figure 2. Effect of noise on image statistics.
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For the zero-noise case, the mean and sigma for the 3x3 neighborhood are
430 and 22; after introduction of one noisy pixel, the mean dropped to 383,
and the sigma increased to 137. On the other hand, for the 11x11 neighbor-
hood, the mean shifted down from 492 to 488, and the sigma increased from 120
to 127, with the introduction of only one noisy pixel. This information was
produced with simulated data for an image which had a moderate gradient. The
main purpose of including the information is to show the effects of small
amounts of noise on small neighborhoods, and indicate how a single bad/noisy
pixel can radically affect the normal statistical measures of quality on appli-
cations in image processing.

In figure 3, the combined effects of number of sigmas and neighborhood
size selections are shown upon the numbers of noisy pixels and good pixels
replaced, This study was made with only one percent noise using the median
filter on the ocean and cloud image (SF11DED). The plots 3x3g and 3x3b repre-
sent respectively the amount of good and bhad pixels replaced by the action of
the filter with increasing number of sigmas selected for the 3x3 neighborhood.

The 3x3b plot at number of sigmas = 2 replaces less than the total (2076)
noisy pixels, so its effectiveness is not perfect at number of sigmas = 2, 1In
addition, at number of sigmas = 2, the 3x3 (3x3g) neighborhood 1s responsible

for replacing (and perhaps disturbing) 4000 good pixels. At number of sigmas
= 1 (not shown), the 3x3 neighborhood replaces all of the 2076 noisy pixels,
but disturbs more than 61,000 good pixels., The best operating point for the
3x3 neighborhood is at number of sigmas = 2,3265, where 1906 bad pixels are
replaced and only 104 good pixels are disturbed. The neighborhood which per-
forms the bad pixels check best is the 9x3 neighborhood with number of sigmas
= 4, where 2051 noisy pixels are replaced and only six good pixels are dis-
turbed. Of course these plots were made for the most benign (least cluttered)
image in the study (SF11DED.IMG).

1% NOISE = 2076 BAD PIXELS
4.0 T
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Figure 3 Neighborhood versus number sigmas {SF11DED.IMG).
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The apparent result of this analysis is to select a large neighborhood.
The original set of data (shown in appendix A) was taken with the bad pixel
check using a 5x5 neighborhood and number of sigmas = 2. When the discovery
was made that using the bad pixel check with the 5x5 neighborhood and the
number of sigmas = 2 resulted in not detecting all of the bad pixels, and at
the same time disturbing many good pixels, more data were taken using an 11x11
neighborhood and varying numbers of sigmas depending upon the amount of noise
in the image. The number of sigmas varied from 4.1 for zero noise to 1.0 for
40% noise,
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SIMULATION GROUND RULES AND LIMITATIONS

This section outlines the major ground rules and limitations of the per-
formance and are described in the following sections.

\ DIGITAL PROCESSING PROCEDURES

In the initial design of the experiment, everything was done to assure

uniformity of procedures for each filter, so that comparison of filtering “ -
techniques would be based upon identity of noise-contaminated images for each .-
filter input. The random number generator was seeded at the same starting
point so that every image for each filter would have the same value of noise
. entered into the same pixels. The selection of a 452x452 submatrix image of
2 the original 512x512 DAEDALUS images was standard throughout the study. The

introduction of noise was over a 462x462 submatrix for the biweight, median,
F. and neighborhood replacement filters, The four-way median filter required

noise to be introduced over a 468x463 submatrix, due to the shrinking of the

four-way median filter through each of its four passes, resulting finally 1in
the 452x452 image which was compaved to the original image. The geonmetry for
the submatrix sizes is shown ir figqure 4.

1

a ¢ £72 & & A
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23 468 X 468 FWM FILTER NOJSE ’

24
FWM BAD PIXEL
2 ‘ CHECK AREA X

462 X 262 BW,M,NR FILTER NOISE j -
BW,M.,NR BAD ..

1 PIXEL CHECK AREA .
FWM PASS 1 458 X 458

FWM PASS 2 456 X 456
FWM PASS 3 454 X 454
FWM PASS 4 452 X 452

N
: BW=BIWEIGHT al
: . M=MEDIAN s
. NR=NEIGHBORHOOD\ \
REPLACEMENT 452 X 452 °
. FWM=4-WAY MEDIAN COMPARISON AREA _ 0

Figure 4. Submatrix size geometry.

In the design of the programs, options were added to vary the mean and
sigma of the Gaussian noise to be replaced in the i1mage and tn vary the number *
of sigmas for the bad pixel check. In addition, provision was made tor the




selection of any one of the five different neighborhoods for the bad pixel
check. These were extra features which extend the capability of testing.

DESIGN LIMITATIONS

Some of the limitations caused by program design considerations are the
images themselves. 1Initially taken from the DAEDALUS tapes, these images are
in raw, byte form, eight bits per pixel. The raw data image pixels have a
limited inteqger range, usually from 30 to 120, In order to display these
images and obtain a good definition of geographic features, the programmer
must scale the images into the color table (or gray-scale) range of 0 to 255.
Both types of images, the raw and the scaled images, were included in this
study. The difficulty of using various filters is that floating point values
generated by the filtering algorithm (for example, the biweight and the neigh-
borhood replacement filters) are rounded to the nearest integer before being
placed back into the image. When the difference between the original and the
filtered images is taken, these roundoff errors have been insignificant due to
the randomness of the dropped fraction and the fact that NINT (nearest inte-
ger) function is used. If the pixel value is nn.00 to nn.4999, only those
amounts are lost. If the pixel value is nn.5000 to nn.9999, the corresponding
amounts are gained. Thus, over a large n, the differences disappear, This
has been verified by a program. The differences are not visible until the
third decimal place, and the differences are inconsistent depending upon the
amount of noise induced into the image.

In the illustrations of the filtered images, a small border of noise
remains around the edge of the image, This five-pixel noise border is outside
of the 452x452 filtered images area, but noise has been added to this area

(462x462) to simulate a full 1maje with noise. The five-pixel border allows
for an 11x11 neighborhood for the bad pixel check. The noise area for the
tour-way median filter also contains a five-pixel border with residual noise
tor the same reason. The four-way median filter five-pixel noise border is
three pixels in each direction farther out from the other three filters' noise
border.

FILTER WEAKNESSES

In the original study, the ettectiveness of the filters begin to deteri-
orate rapldly after 19% noise, Beyond 30%, the filters begin to lock onto
noise and begin to reject the remaining good pixels. Tests (not shown) have
been conducted to verif this condition. However, 1t 1is not expected that
1mages with more than 10% nolsy pixels would be worth processing.

The complexity and consequent time involved in running these filters on a

comput=t dre not too gredt; but compared amoung themsclves, there i3 quite a
difference 1n execution time,

Tne simplest 1s the neighborhood replacement filter, It requires no
sorting or multiple passes. It simply sums the eight neighbors and divides by
elght.

The next 1n complexity 13 the median filter, which assembles the nine
pixels from the 3x3 array around the candidate pixel into a 1x9 array. This
array 1s then passed to the routine SHELLSORT, which on the average makes six
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passes to sort the nine numbers. The routine would be more efficient if there
were more than nine values. When the array passed to SHELLSORT is already in
low to high order, three passes are required which performs 20 IF statements,
but no movement of values. When the routine is done, the array contains the
values in ascending order. The last step of the filter is to store the median
value x(5) into the candidate pixel,

A complicated filter is the biweight filter., It performs the same steps
as the median filter, assembling the 1x9 array, passing it to SHELLSORT, but
on return from SHELLSORT, the biweight routine is called to do the rest of the
processing as described above. Formerly, biweight was an iterative routine
which refined the answer through as many as 200 iterations. But since the
test for convergence was 0.01 between the former (xhat) and the new (xhat),
this portion of the routine was removed. The operation of the NINT statement
in converting the floating point result to integer, more than compensated for
any further refinement.

The application of the four-way median filter requires four passes,
making it the most time-consuming filter in this study. The actual wmethod
used was to do an in-place four-way filter reducing the loop contrul by two
rows and two columns each iteration. Since for each iteration the number ot
pixels involved 1s only three, the sort routine was not used. In figure 5,
five IF statements were used to solve the truth table.

Programming application requires that when applying a two-dimensional
loop control to an nxn matrix, the solution of a matrix operation proceeds row
by row and column by column. When in-place filtering Is pertormed using a 3x3
window, as all the selected filters in this stuldy are, the fonllowing phenomena
becomes apparent as shnwn in fligure 6,

The pixels above the pold line are pixels which have already been fil-
tered; the pixels below the bnld line are pixals which have not been tiltered,
including the candidate pixel. T™his 135 an exanmple of 1n-place filtering.
There are problems and also alvantadges to this method of processing, The:
advantages are:

1. If notse nas been eliminated from tne pixels that have already peen
processed, the neighborhood mean and si1gma tor the bad pixel check will aird in
determining more accurately whether the <aniuviate pixel 1s good or has to be
filtered.

2. If the pixel hnas to be tiltered, the tiltering algorithm will nave
had fewer nolsy pixels to deal with 1n determining a substitutse value,

The problems are:

1« If a good pixel has been replaced by another, or 4 notisy pixel has
not been filtered and still remains in the already processed area, then the
neighborhood mean and sigma for tne bad pixel <neck will possibly resalt in
tagging a good pixel bad, or tagjging 4 noisy pixel as qgood, In elther case,
this is not desirable,.

2. In the filtering alygorithm, whether the candidate pixel 1s good or
bad, the chances are that it will be replaced with one that 1s eilther worse or
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almost as bad. Unfortunately, some of the advantages and some of the problems
prevail throughout the filtering techniques studied in this experiment.

The solution then, could be to not perform in-place filtering. This is
accomplished by building the filtered image into a separate image. This was
tried, and in all cases the results were slightly degraded, which means that
the advantages of in-place filtering slightly out-weigh the disadvantages. Of
course when the bad pixel check is skipped, a large part of the problems of in-
place filtering disappears, and the advantages become preponderant.

Experimentation was performed with a noisy mean other than 0; a mean of
50 was tested which made all of the noise positive, and as expected, the dif-
ference sigmas were slightly improved.

The closer the mean of the noisy pixels approached the mean of the good
image pixels, the difficulty in detecting the noisy pixels become more pro-
nounced. As shown in figure 7, the upper tail of the noisy pixel distribution
intrudes upon the lower tail of the good pixel distribution. When this hap-
pens, a lower number of sigmas for the bad pixel check results in a smaller
number of noisy pixels replaced and a greater number of good pixels disturbed.
The number of sigmas for the bad pixel check must include all the good pixels,
while at the same time excluding all of the noisy pixels,

IMAGE
MEAN +
= SIGMAS = SIGMAS

- 'l pry |
I

FREQUENCY

NOISE
MEAN

PIXEL INTENSITY

Figure 7. Effect of increasing noise mean on bad pixel detection.
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RESULTS , ;

e,

In addition to the filter performance results, this study provided find- &
! ings regarding: -
) <,
1. The use of raw versus scaled DAEDALUS images. j

2. The use of the bad pixel check versus applying the filter over the f

. entire image. ,

. 3. Characteristics of increasing noise and the effects upon the filters' :

' performances. &)

, 3

[]

’ 4. Measurement statistic for filter performance. 2

Ly’

I 5. Filtering of different images.

} ‘.

. 6. Maximum performance expected from a given filter. ﬂ

; 7. 1Image distortion with zero~noise. .

! 8. Improvement of the bad pixel check.

3 RAW VERSUS SCALED DAEDALUS IMAGES o

3 *

In all of the raw DAEDALUS image plots, all four filters performed better {i
than when the scaled DAEDALUS images were used. The performance was similar p
for both types of data, but the raw images resulted in lower difference sigmas -

3 between the original and filtered versions. This was due to the narrower N

S range of histogram values exhibited by the raw DAEDALUS data which were usual- -

: ly between 30 and 120, as opposed to the scaled DAEDALUS data which were be- .

h tween 0 and 255, These differences appear significant, but they are only Ci

. relative, <,

.

BAD PIXEL CHECK VERSUS ENTIRE IMAGE FILTERING %
-~
4.
[}

E The ranking of the filters changed radically when the filter was applied é
nver the entire image (no bad pixel check), and specifically, the neighborhood ?-
replacement filter performance declined adversely over the low range of noise o

\ () to 4 percent), see figure 3.

\ :

: Generally using the bad pixel check, the following results were true: ",

\ -

: 1. At 0 and 1! percent noise the biweight filter was better than the rest ot

I . sometimes by only a very slight marjin. The four-way tilter outperformed the v
biweight at O percent 1n 3 out of the & 1mages, doing better on land alone, as

: opposed to the biwelght's better performance when water was involved 1in the .

v 1nage . .

" o

2. At 2 perZent nolse, sometimes the biweirght, median, or four-way was :“
-

the best.  With the raw DAEDALUS 1nages, the biweight didn't do as well; a tie
ustually resalted between the median and the four-way median. ~
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3. At 3 to 5 percent noise, the four-way filter was usually the best,
except occasionally the median filter outperformed the four-way filter using
the scaled versions of the images.

4. From 6 to 30 percent the four-way filter outperformed all the other
filters for both the scaled and raw images.

Generally, not using the bad pixel check (when the filter was applied
over the entire image) the following results were true:

1. At O and 1 percent noise, the biweight filter performed the best for
both raw and scaled images, but only by a slight amount over the median filter.

2. At 2 percent noise the median filter performed best for the raw

images, and the biweight filter performed best for the scaled images. In the
case of the ocean scene the four-way filter performed best for the raw image.

3. At 3 to 30 percent noise, the median filter performed best for four
of the scaled images (bay, downtown San Jose, mountains, and Santa Cruz). The
four-way filter shared best performance with the median filter in this range
for two of the scaled images (North San Jose and ocean). For the raw images
{San Francisco Bay and downtown San Jose), the median filter performed best.
For four raw images (North San Jose, mountains, Santa Cruz, and ocean} the
four-way filter shared with the median filter, in this range.

The results of best filter performance are shown in table I.
EFFECTS OF NOQISE UPON FILTERING ACTION

Figure 9 shows the effects of increasing noise upon pixel replacement for
the bad pixel check, Though this plot is for the ocean image, the remaining
images have very similar plots. The data for the no bad pixel check (when the
filter 1s applied over the entire image) are not worth considering since the
number of pixels replaced are 204,304 for the biweight, median, and neighbor-
hood replacement filters, and, though the numbers vary, between 431,000 and
613,000 for the four-way filter.

The interesting aspect of figure 9 1s that 1t clearly depicts the actions
of the filters throughout the noise range of 0 to 30 percent. The key points
Are 0 and 19 percent. At 0 percent noise, all of the filters perform filter-
1ny when in reality, none is required. This of course means that this ten-
dency of a filter to replace good pixels is going to persist to some degree as
noise is added to the 1image. Between 0 and 10 percent noise contamination,
the number of pixels replaced by most of the filters appears to approach the
. true number »>f noisy pixels, but this i1s merely an 1llusion, for during the
gradual 1introduction of noisy pixels, the respective filters continue to re-
place gnod as well as bad pixels, presumably to a lesser degree.

Up to 20 percent noise contamination, most of the filters appear unable
to keep up with the 1ncreasing noise contamination, and though they replace
more pixels 1n absolute number, 1t 1s appdarent that a good deal of the noisy
pixels are not being replaced, except for the four-way median filter,
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Figure 9. Pixel replacement (SF11.IMG).

From 20 to 30 percent the filters show strong signs of degradation. The
noise is beginning to strongly degrade the bad pixel check which allows the
retention of the noisy pixels.

The four-way median filter deserves special discussion since its method
of application is unique, In figure 9, the four-way filter clearly does more
pixel replacement than any of the others at every percentage of noise introduc-
tion, and at zero percent noise, the four-way filter replaces more good pixels
than any other. As each pass of the four-way tilter takes place, fewer and
fewer pixels are replaced., From the shape of the four-way filter envelope in
Figure 9, its general behavior is similar to the other filters, except that it
puertorms more pixel replacement, even at the higher noise percentages.,

The method of counting the number of replacements tor the four-way filter
is different than the method used for the other filters. For the other fil-
ters, 1f the bad pixel check indicates that the pixel needs replacement, the
count of the replaced pixels are incremented, and then the filtering action is
taken. For the four-way filter, if the bad pixel ~heck indicates that the
pixel requires replacement on one of the passes, the filtering action is taken
{via the five IF statements), and 1f the pixel to be replaced 1is determined to
be replaced by itselt, then the count of the replaced pixels 1s not incre-
mented.  The replacement pixel count is only incremented when the pixel to be
replaced 1s replaced with one ot i1ts two neighbors (vertical, horizontal, or
on one of the diagonals).
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STATISTIC FOR PERFORMANCE MEASUREMENT

The best statistic for measuring the performance of the filters was found
to be the standard deviation of the difference between the original image and
the filtered image after the filter had been applied to remove the noise.
For every level of noise, each type of image, whether raw or scaled, and with
and without the bad pixel check, the correlation coefficient and the sigma of
the difference between the original and the filtered images were computed ftor
each filter. The correlation coefficient is not as good a comparison statis-
tic as the difference sigma. Hence the difference sigma was used to produce
the plots shown in appendix A.

If the filtering action had removed all of the induced noise from all of
the images, the mean and the standard deviation of the difference between the
original and filtered images would have been zero, and the correlation coeftfi-
cient would have been 1.00.

However, since at each percentage of noise replacement, there is residual
noise after the filtering action, the mean of the difference is usually approx-
imately zero, with a nonzero standard deviation, and a correlation coetricient
less than 1.00. As increasingly more noise is placed into the images, and as
filtering of noise decreases as shown in Figure 9, the mean of the difference
between the original and the filtered images becomes more and more positive,
due to the greater number of noisy pixels that remain in the tiltered 1image.

FILTERING OF DIFFERENT IMAGES

with the exception of the ocean and cloud scene (SF11.IMG and
SF11DED.IMG), most of the filtering actions upon the various lmages was simi-
lar. The four-way median filter fared better overall with the ocean and cloud
scene than the other filters, All the filters had better perftormance with tne
ocean and cloud scene than the other images; the initial disruption of the
zero-noise version was less, and from that point on with 1ncreased noise,
every filter out-performed itself compared to its performance with tne other
images.

MAXIMUM PERFORMANCE EXPECTED FROM A FILTER

This study presented an opportunity to evaluate a yiven filter in order
to determine its maximum possible filtering capability. Ssince tne original
images were offset from O by 300, since Gaussian noise was placed in the 1inmaye
in percentages from 0 to 30 percent, and since the value of noise added varied
between ~20 and +20, a very simple algorithm was employed to test the maximum
potential of a given filter. Instead of employing the usual bad pixel check,
in its place a check was substituted to determine if the candidate pixel was
less than 300. 1If less than 300, 1t was noise and tne filtering action was
invoked; if not, the pixel was considered good, and filteriug was by-passed,

Figure 10 compares the expected and actual performance of the biwelght
and neighborhood replacement filters. These two filters are yrouped together
because they essentially act the same., The falloff 1n performance as hoise 1s
increased is apparent both in the maximum possible and actual performance. Ot
course, the actual performance falls off more rapidly than the expected. ‘rhe
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Figure 10. Actual/expected performance lower San Francisco Bay, biweight and
neighborhood replacement.

closest area of coincidence is between 2 and 4 percent noise contamination,
with the closest point at 3 percent.

Figure 11 compares the expected and actual performance of the median and
the four-way median filters. These two filters are grouped together because
they act in a similar mannevr., Both of these filters perform bad pixel replace-
ment with actual image values, and not computed values as do the biweight and
the neighborhood replacement filters. The maximum performance of both these
filters is very fine and very similar. The actual performance, with the
exception of the zero-noise oftset, follows the slope of the expected perfor-
mance very well until after 4-percent noise, when it degrades in a manner
similar to the biweight and neighborhood replacement filters. The expected
performance of these filters shown in Figure 11 is mirrored by the performance
of these same filters when the bad pixel check is skipped and tne filter is
applied over the entire image, refer to appendix A.

when the four-way filter was run using the less-than-300 check to deter-
mine its maximum possible performance, it was noted that during the first
pass, a Jreater percentage ot pixels were replaced than were in the 452x452
imaye., This was due to the fact that the area for the first pass was 458x453
and thus contained more noisy pixels, on the subsequent passes, lesser and
lesser amounts of pixel replacement occurred, indicating that not all pixel
replacements were made with good pixels, but as the noise pixels were gradu-
ally eliminated, the tewer remaining nad a bhetter chance of being replaced by
a good scene pixel.
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Figure 11. Actual/expected performance lower San Francisco Bay, median and
four-way median.

IMAGE DISTORTION WITH ZERO-NOISE

The effectiveness of the various filters evaluated 1n this study depends
also upon the amount of distortion caused by the filter at zero-noise, ftor 1f
any filter is to perform well, it must have minimal distortion on the image
when there is no noise in the image. If there is a great deal of image distor- X
tion caused by the filtering action when there is no noise, then this tendency
will continue regardless of the amount of noise actually in the image. An
analysis was made of the zero-noise level of filtering tor all of the images
(raw and scaled) and for the bad pixel check versus the no bad pixel check.
The sigmas of the difference between the original and the filtered 1mages were
used as the criteria. The sigmas for all of the filters at zero~noise were
averaged and were used to construct table Il. The average of the zero-noise N
values was used because for all of the filters, on any one 1mage, the sigmas _
for each of the four filters were very close together in value, as can be secen
from the plots in appendix A, In most cases the deviation was only .01 to .66
in magnitude, The individual filters were also ranked by their ability to .
minimize zero-noise image distortion.,
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Table II. Filter image distortion with zero-noise.

F v ¥y r

BAD PIXEL CHECK NO BAD PIXEL CHECK

R Scaled | Order Raw Order Scaled | Order Raw Order
- Sigma Sigma Sigma Sigma

SF1 3.61 1 2 3=4 1.2 1234 10.8 1234 3.59 1243

NS N o]

' SF2 2.89 41 23 «97 41 23 8.03 1243 2.7 1243
SF3 7.1 41 23 2,36 4123 17.62 1243 5.88 1243 '
) SF6 3.75 4 1 2=3 1.48 41 32 9.13 1243 3.65 1243 ‘o

SF8 3.37 1432 .84 1432 8,06 1243 2.01 1243

0

SFt11 1.44 1423 5, 1243 3.92 1 3=4 2 1.35 1 3 2=4

Biweight=1, Median=2, Neighborhood Replacement=3, Four-way Median=4

“acs
o«

All sigma values are averaged for all four filters.

- One outstanding characteristic of all of these filters is that they all -

X have the same propensity of image distortion at zero-noise., Even though the -
biweight filter was better than the rest, its performance in terms of the .-
others was not that much better; the ranking is only an artifact of comparing ¢

] the absolute values, and being forced to select one as dgreater than or less

. than another. 1In view of this comment, the performance of the filters at zero-

. noise is (1) biweight, (2) median, (3) four~way median, and (4) neighborhood
replacement, from bhest to worst.

VXA P

At zero-noise, the effect of not performing the bad pixel check is to

introduce more filter distortion into the image, however this tendency is not

so pronounced when comparing the raw images. At zero~noise approximately 3

percent of the pixels are distorted from the original and if as mentioned

earlier, some of this distortion is actually removing noise that was present

in the original image, then this concern of distortion at zero-noise would

become lessenad, However, when the filter is applied to the entire image

3 (without the bad pixel check), the median and four-way median filters do tend

; to follow their maximum possible filtering curve better than when the bad
. pixel check is performed.
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IMPROVED BAD PIXEL CHECK

The bad pixel check was improved by increasing the neighborhood to 11x11
and using arious number of sigmas for increasing amounts of induced noise as -
shown in table 1ILI[.
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Table III. Improved bad pixel check (11x11 neighborhood). ;
.
E Noise (%) # of Sigmas | Noise Pixels Noise Replaced | Good Disturbed -
- “
0 4.1 0 0 14 . :
1 3.5 2076 2076 24 . N
2 3.5 4074 4074 14 ¢
3 3.5 6021 6021 6
4 3.1 8035 8035 19 R .
5 3.0 10,069 10,068 11 :
6 2.9 12,084 12,079 5 s
7 2.8 14,056 14,047 5 by
8 2.7 16,068 16,061 3 s
9 2.6 18,075 18,067 3 3
10 2.5 20,110 20,105 5
20 1.5 40,259 40,259 0 b
30 1.3 60,716 60,712 0 :
40 1.0 81,424 81,424 16 \
Tests were run on the raw DAEDALUS images downtown San Jose (SF3DED) and '
ocean and clouds off Santa Cruz (SF11DED). These are respectivnly the most
and least cluttered of the 1mages, The results are shown in figure 12 for K
downtown San Jose, and in figure 13 for ocean and clouds off -santa Cruz. The ;
improvement in both images over the performance using the bad pixel check with .
a 5x5 neighborhood and constant number of sigmas = 2 is substantial. The .:
unevenness of the plots between 5- and 10-percent noise could be eliminated by
fine-tuning the selection of number of sigmas, because, as table III shows,
. not all of the noise was removed, Residual noise contributes more to in- i
° creasing the difference siqgmas (difference between the original and filtered .r
: images) than does the small amount of good pixels disturbed. h
- (NS=10) 20 11 X 11 BAD PIX CK MIXED SIGMAS: Gm - 0 Gsd - § '
- *»
- 35 s
: INs=1.4) 30 .
w25 _
S "
INs=15) 5 20 :
w H "]
é;, .
& 15
L J
A NS=2.5) 10 K:
3 (NS=3.0) 5 95°% CORREATION AT 3 35 DIFFERENCE SIGMAS K.
* ~
Y (NS=4.0 0 L 1 L L 1 L -t 1 1
0 5 0 15 20 25 30 35 40 45 50 55 60 65 70 75 2
ORIGINAL - FILTER DIFFERENCE SIGMA .
: Figure 12. Improved filter performance (SF3DED.IMG). \ /
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Figure 13. Improved filter performance (SF11DED.IMG).
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SUMMARY OF FILTER PERFORMANCE ?f
(i1
The major consideration in arriving at a final determination of filter -
performance is not to look at the statistics alone, but also to look at the J\
final filtered image. All of the filters have a tendency to blur or distort
the original in some manner. The manner of inducing noise in this study was . 9,
not to add or subtract some constant (or even variable) to the pixels in the :{
image. The actual pixel values were replaced with values that have no rele- .
vance to the original pixel value. The original pixel value is gone; it can v o
never be completely recovered, The filtering techniques were evaluated to see )
how well the substituted value came close to the original pixel value. ;t
%
,
e
Another consideration is the amount of noise that a filter is expected to 9«
replace. Even with levels of noise as high as 50 percent, it is surprising "ﬁA
that a human being can still recognize the major content of an image. 1In this —
respect, all of the filtering techniques appear to be performing well. On the N
other hand, if restoration of an image is required to make intelligible some ;\
small 2x2 or 4x4 pixel area for identification purposes when 50 percent of the ‘Q
pixels are replaced by noise, then these types of filters would be inadequate, ;3
if indeed any would be adequate. Hﬁ,
Several criteria have been selected to evaluate the filters in view of :{
the above: 0
™
1. The potential of the filter at different levels of noise ES.
2, The effectiveness of the filter at different levels of noise -
Ry

1]

Ly

FILTER POTENTIAL

AN

»n

Figures 10 and 11 show that the maximum potential for the tour filters is Ef
limited assuming that a bad pixel check can be designed which will precisely iy
identify only the bad pixels, and if these are compared, the ranking of the .
filters would be (1) median, (2) four-way median, (3) biweight, and (4) :f
neighborhood replacement. This is the best that the filters could pertform. :r'
The expected performance is thus the best it could possibly be throughout the Ny
entire range of noise replacement, from 0 percent to 30 percent, Q;

Viewing these plots shows that the consistency ot maintaining a good
replacement of noise with values close to perhaps the original pixel values is
continuous throughout the range for the median and four-way median filters. On
the other hand, the biweight and the neighborhood replacement filters fall oft
in potential performance as the amount of noise contamination increases, The ' .
median and the four-way median filters replace noise with actual original
pixel values, whereas the biweight and the neighborhood replacement filters

4

. M '. .
,.'.‘- .

'

P T
.
'

-y
L4
o *,

manufacture new pixel values that may never have existed 1n the original imaqge. ;;‘
< e

P

FILTER EFFECTIVENESS X
h

Until the bad pixel check was improved to reduce or eliminate zero-noise L
image distortion, the perftormance of all four filters throughout the entire by
range of 0 to 10 percent noise fell short of the expected performance, as -
shown by Figures 10 and 11. The four-way median and median filters performed {i\
bo

W
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well in the O0- to 4-percent noise range, so they could be classed as the
better filter.

Without the bad pixel check, clearly the median and four-way filters are
more effective than the biweight and neighborhood replacement filters as shown
in figure 8,

Figures 12 and 13 show that the median and four-way median filters out-
perform the biweight and the neighborhood replacement filters, and that the
four-way median filter outperforms the median filter at noise levels higher
than 10 percent. These plots were made using the improved bad pixel check
discussed earlier.

SURVEY OF FILTERED IMAGES

A program was written to display the original image, the original image
contaminated by noise, the noise mask, the filtered image, and the mask of the
residual noise and good pixels disturbed by filtering. Due to the fact that
in many cases residual noise remained in the filtered image, the image would
have to be rescaled in order to display it. The rescaling with noise values
from -20 to +20 distorted the filtered image compared to the original. It was
decided to produce a synthetic representation of the filtering action. The
original image was input from disk and displayed as is. Then another working
image was built of the original image plus the 300 offset and plus noise.
This was the image upon which the filter worked. The original image had the
same noise pixels as the working image, but instead of values from -20 to +20
the values were what the operator selected, usually zero, which displayed as
black. The original image with black noise was displayed, then a noise mask
was displayed. The noise mask was built at the same time the black noise was
added to the original image. The noise mask was black with white noise. Then
the filtering action took place. As each pixel requiring replacement (as
Jetermined by the bad pixel check) was corrected in the working image, a check
was made in the original image for presence of zero pixel values (indicating
noise) . If the pixel to be replaced was zero, then the count of noise
replacement was incremented and the noise pixel in the mask was zeroed; if not

zero the count of pixels disturbed was incremented and the pixel in the noise
mask was made purple.

In either event the pixel in the original image was replaced with the
replacement value in the working image minus 300. This was not the correct
value, but served to indicate that a correction had been made, and also re-
moved the zero (noise) values from the original, After filtering, the origi-
nal with synthetic noise removal was displayed, and finally the residual noise
mask was displayed. Pictures were taken of the sequences for different images

and varying amounts of noise. The filter used for the filtering action was
the median filter.

Figures 14, 15, and 16 show respectively 1-, 5-, and S50-percent noise
masks. It is not likely that any images containing 50-percent noise would be
processed, but figure 16 gives an i1dea of that amount of noise.
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Figure 17 shows 1-percent noise applied to the ocean and cloud image off
Santa Cruz. The picture was dark so white noise was synthetically added.
Below and to the right of the image center is a ship. Noise is not added to
the edge of the image.

Figure 18 shows the results of filtering using a 3x3 neighborhood and
number of sigmas = 2 for the bad pixel check. Original noise remains in the
five-pixel border, which the filter does not cover, and some residual noise re-
mains as seen by the white noise still in the image.

Figure 19 shows the residual noise mask. The large dots are the residual
noise; the small dots are good pixels which have been disturbed. 1In black and
white photos the difference between the residual noise and the good pixels
that have been disturbed does not stand out too well.

Figure 20 shows S5-percent noise replacement in the lower San Francisco
Bay image. The noise is in black.

Figure 21 shows the results of median filtering. The bad pixel check
employed a 9x9 neighborhood and number of sigmas = 2.5. Of the 10,069 noisy
pixels in the original, the filter removed 10,040, and disturbed only 24 good
pixels. The residual noise mask for this filtering is shown in figure 22.

Figure 23 shows northern San Jose with 10 percent noisy pixels in black.
Using a 9x9 neighborhood and number of sigmas = 2.0, 19,996 noisy pixels were
replaced out of 20,110, and no good pixels were disturbed. The results of
filtering are shown in Figure 24 and the residual noise mask is shown in

figure 25.

Figure 26 shows Santa Cruz and tne ocean with 30 percent black noise
added. Using 9x9 neighborhood and number of sigmas = 1.0, 60,709 of the
60,719 noise pixels were replaced by the median filter, and only two good
pixels were disturbed. The results of the filtering is shown in figure 27,
and the residual noise mask is shown in Figure 28.
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Figure 20. 5% noise on fower San Francisco Bay.
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Figure 25. Residual noise on northern San Jose.
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RECOMMENDATION FOR FUTURE STUDY

Another improvement to the bad pixel check would be to build a bad pixel
mask as shown in figure 29, This would be done by applying the bad pixel
check to the entire image three times. On the first pass the bad pixel check
would sum only the good pixels in its neighborhood for computation of the mean
and sigma. Since the first time through, the pixels above and to the left of
the candidate would have already been marked as a bad or good pixel, the bad
pixels can be left out of the sum.

NEIGHBORHOOD BAD

PIXEL MASK BAD PIXEL MASK

1jo]ojojo PROCESSED 1Jo]lojojo

PIXE

olofo]1]o Ls oloflo]i1]o

ojojojojo 0] o0 110]0

pjJojojo}jo ojojojojo

0jojojojo 1 0 11010
FIRST PASS: SECOND PASS: THIRD PASS:
Compute mean and sigma of Skip good pixels, recheck bad Use bad pixel mask to filter
submatrix using only good pixels pixels using only good pixels. and replace only bad pixels
mark bad pixels as 1. Make bad pixels good if within (as per mask).

selected number of sigmas

from mean.

Figure 29. Bad pixel mask.

On the second pass, all bad pixels in the mask can be checked to see 1if
they are really bad pixels; if not, they can be returned to the status of good
pixels., The mean and sigma computations would be made using only the good
pixels in the selected neighborhood. On the third pass, actual filtering can
be carried out using a 3x3 neighborhood, but only the good pixXels 1in that
neighborhood would be processed to replace the marked bad pixels. Oon  the
third pass, only the bad pixel mask would be screened to determine which
pixels require replacement., Time would be saved on the third pass, since the
noisy pixels haye already been tagged. The filters would use only the good
pixels in the 3x3 neighborhood around the candidate pixel, variations 1in
filtering would have to be made for each filtering operation. The biwelght
filter would have to be revised to operate on less than nine pixels, The sort
routine SHELLSORT is designed to handle any number of values.

The median filter would have to be revised to handle even numbers of
pixels (2, 4, 6, or 8) by averaging the first and second (for n=2), the sccond
and third (for n=4), the third and fourth (for n=6), and the fourth and fifth
(for n=8); and using this average for replacement.
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The neighborhood replacement filter would sum only the good pixels in its
neighborhood and divide by the n of the good pixels.

The four-way median filter, on each of its passes, would not replace
unlegss at least one good pixel was found in one of the two wings of the ver-
tical, horizontal, or diagonal sets.

In all the filters, when a replacement is made, the bad pixel mask is
updated by making the bad pixel good. This means that the replaced pixel can
be used subsequently in the computations for replacing other bad pixels in its
3x3 neighborhood.
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program onfl
this program reads daedalus images fraom disk then introduces
normal noise then applies biweight filter to remove the noise
then computes correlation between original and filtered images
include ‘teamdef. for/nolist’
INTEGER#2 cc(262144) !corrupted image
integer#4 seed, T(3512)
real#*8 dsum, dsq.corr. 50, SC, POL, $5Q0, SSQC
real med(9) !array for sorting
byte dd(262144) 'original image
character#20 f !file name
seed=77737
do 1 i=1,512
r(i)=(i-1)#512 !'build row table
imGT_INITIAL(1:2) 'init term Function 8 mmmie i 630558 5563 560 400 5 %
call GT_PROMPT(’ONF1> ) 'terminal prompt
i=gt_word(’'Disk File Name(SFn(DED). IMG)="‘, £(1:20))
open{unit=7, file=¢f, form=‘unformatted’, status=‘0ld’, err=88)
read(7, err=88), dd 'GET IMAGE
type *, 'IMAGE= ', £
close(unit=7)
do 7 ir=26,487 !'converting image from byte to ix2
do 7 ic=26, 487
ip=dd(r(ir)+ic) 'orig byte
if(ip . 1t. O)ip=ip+256 'if 128-255 make positive
ip=ip+300 'shift up to get away from O mean gausian noise
cc{rliv)+ic)=ip 'put in contaminated image.tho not yet contam
izgt_real('# Sigmas for bad pixel criterion=’',sig)
i=gt_integ(‘Neighborhood Size (ie 3x3=1,5x5=2)=', is)
i=gt_integ(‘O=Bad Pix Check; 1=Skip =’,1ik)
fn=(is+is+1)#(is+is+l) 'compute n for
g=204304.0 '# of pixels in 452#452 image
ibp=0 '# pixels contaminated
if(gt_ask(‘Want to introduce noise’,none). eq.nolgoto &7
i=gt_real(’Enter Percent contaminated’, p)
i=gt_real( ‘Enter Gaussian Mean’, gm)
i=gt_real(‘Gaussian std. dev. ‘', sd)
do 66, ir=256,487 ! this loop enter 1-p % gaussian noise mean O.sigma=sd
do 66, ic=26,487 !'corrupt whole picture
if(ran(seed). gt. 1. O-p)then
cc{r(ir)+ic)=nint(gauss(gm.sd)) ! noise
if(ir .ge. 31 .and. ir . le. 482)then
if(ic .ge 31 .and ic le 482)ibp=ibp+1l '# pixels corrupted
end if
end if
continue
dsum=0. O
dsq=0. 0
do 8 ir=31, 482
do 8 ic=31,482
ip=dd{(r(ir)+ic)
iflip . 1t. O)ip=ip+256
pd=float(ip+300)~float{cc(r(ir)+ic)) 'dif orig-contam
dsum=dsum+pd ' Sum of diffs
dsq=dsq+pd¥pd 'sum of diff squared
dmean=dsum/g 'mean of difference of orig. and contaminated images
dsd=sqrt((dsq/g)—dmean*dmean) 'stan dev. of difference
type #, ‘DiffF(CONTAM. ~ORIG. ) Mean=', dmean
type #, ‘Diff(CONTAM. ~-ORIG. ) Sigma=‘.dsd
1cp=0 '# pixels corrected
igp=0 '# good pixs disturbed
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nbp=0 !# bad pixs corrected (4
do 25, ir=31.482 'detect bad pixels and correct

do 25 ,ic=31,482
if(ik ne. O)goto 23 !'skip bad pixel check, filter all -E

x=float(cc(r (ir)+ic))

dsq=0. 0 :
dsum=0. 0 .
N do 21 iro=-is,is !'fn window compute mean and sigma W
do 21 ico=-is,is *;
pc=float (cc{rlir+irol+ic+ico)) 'get pixel ‘{
L4 dsum=dsum+pc ! sum -
21 dsq=dsqt+tpc#pc !sum squared —
cmean=dsum/¢n ! compute local mean }
csd=sqrt((dsq/fn)--cmean#cmean) ! local stan dev >
if((x ge. cmean~sig#csd). and. (x. le. cmean+sig¥csd)igoto 25 !qyouod i
23 icp=icp+l !count corrected pixels subtract from contaminated ?
ict=0 K
if(cc(rlir)+ic) 1t. 200)then o
nbp=nbp+t 'bad pixs corvected
else -
igp=igp+1 'good pixs disturbed -
end if o
do 22 iro=-1,1 'extract 3x3 window .
do 22 ico=-1.,1 Yy
pc=float(cc{rlir+iro)+ic+ico)) 'get pirxel A
ict=ict+! .%(
22 med(ict)=pc 'med index varies from 1--9 Y
call shellsort(med,?) 'veq for biwgt % med
] call biweight (med, x) .
\ cclrCir)+ic)=nintix) C?
25 continue o,
type #, ‘# noise pixels=',ibp, ' # corrected pixels--,icp <
3 type #*, ‘# noise pivels fixed='.nbp, ' # good disturbed=’,1qap ~}
. $0=0.0 'Sum of ori1g e
! s¢=0.0 'Sum of filtered .
poc=0.0 'cross prod
$3q0=0.0 !'sum orig squared =
s8qc=0.0 'sum filt squared N
dsum=0.0 'sum of di1ff P;
dsq=0. 0 'sum dif squared .~
do 18 ir=31, 482 .,
do 18 ic=31, 482 .
ip=dd(r(ir)+ic) ‘original pixel o
iflip . 1t. O)ip=1p+256 e
po=float (ip+300) o
pc=float(ccir(ir)+ic)) o
s0=so0+po 'sum of orig ;¢
sc=sc+pc 'sum of filtered -
poc=poc+po#pc 'sum cross product ~4
ssqo=ssqo+po*po !sum orig squared Y
ssqc=ssqctpcHpc 'sum filtered squared o
dsum=dsum+(po-pc) 'sum of diffs o
18 dsq=dsq+(po—pc)#(po-pc) 'sum of dif squared
dmean=dsum/g 'mean of difference of original and filtered images -
dsd=sqrt((dsq/g)-dmean*dmean) !stan dev. of difference ;:
corr=(g*poc~sonsc)/(sqrt((g#ssqo-so*so)*(grscsqc—scHsc))) :Q
' type *, 'CORRELATION(original, fFiltered)=",cory X
type », '‘Diff#(FILTERED-ORIG) Mean=', dmean i"
type #, '‘DifF(FILTERED-ORIG) Siigma=',dsd, ’ = vo,
type #, ‘Biweight FILTER NOISE=',p ‘
type %, 'NOISE Mean=',gm. * NOISBE Std dev=', sd, * Neigh=', 15
call exit
end g
include ‘mathfunc for/nolist’ o
include ’‘shellsort for/nolist’ o
include ‘biweight. for/nolist’ a0y
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program oni¢’

this program reads daedalus 1mages from disk then intradices
normal noise¢ then applies the median filter to remove the naise
then computes correlation between original and filtered i1mages
option added to skip bad pixe] check

variable neighborhood for bad pixel check 1e 3x3. 5x5 etc
include ‘teamdef for/nolist’

INTEGER#®2 cc(262144) 'this is corvupted imaye

integer#4 seed, r(512)

real*8 dsum, dsq,covr, 50, SC, PUL, $5YU, SSQC

real med(9) 'array for surting

byte dd(262144) 'original image

character#20 ¢ ' f1le name

(€ 2232222222222 22 12022222 DL LSS 23 et Ae ettt s XY L)

nNMN"AN

seed=77737
do 1 1=1,517
1 T(1)=(1-1)%#512 ‘buirld row table

[ R T R R s T T R A Y Ty S
1=GT_INITIAL (1,2) '"init term function

call GT_PRUMPT( ‘ONF2: ") 'terminal prompt
R 2 T R T T R R T S A Ry e Y T T Ty
88 1=gt_word( 'bDisk File Name (SFn(DED) IMG)=", (1. 201

open{unit=7, file=f, torm= ‘'unformatted’, status=‘0ld ., err=8a)
read(7, erv=:88),dd 'GET IMAGE
type #, ‘IMAGE= ', f
close{unit=7)
Ly N T R T Ty I Y Y Y YT T e T ey
do 7 1v+26,487 'converting image from byte to 1w
do 7 1c=s, 487
1p=dd(réir)+1c) 'orig byte
1fC1p 1t O)ip-ap+256 '1f 128--255 make positive
yp=1p+ 00 "shift up to get away from O mean gausian noise
7 cclrearivaci=1p 'put in contaminated image, tho not yet contam
R I Ty Ry Y TS TR TR T T S TR YT Y T T
i=gt real('# Sigmas for bad pisel crviterion=",sig)
it=gt_integ(‘Neighborhood Size (ie 3Ixd=1, 5xS=2)=",18)
i=gt_integ(‘'O=Bad Pix Check: 1=Skip =, ik}
fn=(1s+15+1)#(is+is+l) 'compute n for bad pix check
g=204304. 0 '# of pirels in 452%452 image
1bp=0 '# pirrels corrupted
if(gt_ask( Want to introduce noise’.none). eq nolguto 67
1=gt_real( ‘Enter Percent contaminated’, p)
1=gt_real( ‘Gaussian mean=‘,gm) 'allow any gaussian mean
1=gt_real( ‘Gaussian std. dev. ’, sd)
(A2 Ry Ry LY T Ry A P P
do 64, 17v=24.487 ' this loop enter 1-p % gyaussian noise mean O, s1gma=sd
do b6, 1c:26,487
1f(rani(seed). gt 1 O -plthen
cc(rCir)+icrI=nint(gaves(gm,sd)) ‘noise
if(ar .ge 31 and. iv le 482)then
1f(1c ge 31 and ic le 482)1bp::ibp+1 '# pixels covrupted
end 1f
end 1f
66 continve
CHBHNBRNBRB AR R RL R A R ERRR SRR BB B BR AR LR RSB B IBA BB AT AL ORREERRBRRE R
&7 dsum=0. O
dsq=0 O
do 8 17=31, 482
do 8 ic=21, 482
ip=dd(v(1r)+1c)
1fQap It O)ip-1pH256
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h 1
¢ pd=float(ip+300)-Ffloat(cc(r(ir)+ic)) !diff orig-corrupted ¢
i dsum=dsum+pd »
8 dsq=dsq+pd*pd
dmean=dsum/g ! mean of difference of orig. and contaminated images
dsd=sqrt((dsq/g)-dmean*dmean) 'stan. dev. of difference -~
b type #, ‘DifF(CONTAM. ~-ORIG. ) Mean=’, dmean [yt
Y type #, ‘Diff(CONTAM. -ORIG. ) Sigma="‘, dsd fat.
Y . icp=0 !'# pixels corrected o
d nbp=0 ™ |‘
igp=0 {]
) AU S S0 A0 33000 30 30 30 006 33 06 00 3000 36 16 303036 36 00 3636 36 36 36 30 3030 3 336163 I 3633 36 3606 I 336303 00 B f
= do 25 ir=31,482 ! detect bad pixels and correct
do 25 ic=31,482 .
if(ik .ne. O)goto 23 !'skip bad pixel check, filter all w
x=float(cc(r(irl+ic)) b
dsq=0.0 .
] dsum=0. 0 S
do 21 iro=—is,is ! fn window compute mean and sigma ;
. do 21 ico=-is, is .-
pc=float(cc(r(ir+irod+ic+ico)) !get pixel 4
dsum=dsum+pc ! sum
] 21 dsq=dsq+pcapc 'sum squared 1
X cmean=dsum/€n ! compute local mean .
. csd=sqrt(dsq/fn-cmean#cmean) ! local stan. dev
N if((x. ge. cmean—sig#csd). and. (x. le. cmean+sig#csd))goto 25 ! good
. 23 icp=icp+1 !count corrected pixels
if(x . 1t. 100.0)then i
. nbp=nbp+1 ! found bad pixel i
else ’
igp=igp+! 'correcting good pixel
., end if .
- ict=0 f)
do 22 iro=-1,1 !'3x3 window filter 5
5 do 22 ico=-1,1 A
) pc=float(cc(r(ir+irol+ic+ico)) !'get pixel Y
h ict=ict+1
22 med(ict)=pc 'med index varies from 1-9 -
call shellsort(med. %) 'req for med
. cc{r(ir)+ic)=nint(med(5)) ' median s
3 if(float(cc(r(ir)+ic)). eq xligp=igp—-1 !'same pixel R
: 25 continue :
K] C A3 5000020 3830 38 30 30 36 36 36 30 30 3 30 36 30 30 36 34 3536 3 0 36 30 36 30 3 3 3 3 36 30 2k 30 3 3 30 94 4 35 30 3 3 3 36 30 34 T A 33 0 0 I [
type #, ‘% corrupted pixels=’,ibp, ' #corrected pixels=‘, icp N
Al type %, ‘% corrected pixels=',nbp, ' #disturbed pixels=’, igp v
$0=0. 0 !Sum of orig
z ¢¢=0.0 'Sum of filtered
- poc=0.0 'cross prod ':
X $$Q0o=0.0 !sum orig squared ¢
K ssqc=0.0 !'sum filt squared :
g dsum=0.0 ! sum of diff ;
« dsq=0. 0 'sum dif squared .
: do 18 ir=31, 482 Ny
do 18 ic=31, 482 :
ip=dd(r(ir)+ic) 'original pixel
iflip _1t. O)ip=ip+256 e
. po=float(ip+300)
. pc=float(cc(r(ir)+ic)) .
L ’ so=so+po 'sum of orig *
. sc=sc+pc 'sum of filtered -
° poc=pac+pa*pc ' sum cross product o
£ $5qO=8$5QO+poO#po 'sum orig squared o
: ssqc=ssqc+pcepc 'sum filtered squared
. dsum=dsum+(po-pc) 'sum of diffs
- 18 dsq=dsq+(po~pc)n(po-pc) 'sum of dif squared

C’QQ...IC’{’Q’IQD'Q'OQIQQ.Il.l‘l{l’!.l!ifi"l‘lﬁlliGﬂ'{l!ﬂl!lli{I!Q!!
dmean=dsum/g 'mean of difference of original and filtered 1mages
dsd=gqrt{(dsq/g)-dmean*dmean) 'stan dev. of di1fference
corr=(gapoc~-so®sc)/(sqrt((gssqo-50%#50)*(g¥ssqc—Sc*#sc)))
type #, ‘CORRELATION(original, filtered)="',corr
type #, 'Diff(FILTERED-ORIG) Mean=', dmean
type #, ‘Diff(FILTERED-ORIG) Sigma=', dsd, *
type », 'Median FILTER NOISE=',p
type #, ‘Gaussian NOISE Mean='.gm, ' NOISE Std Dev=', sd
call exit
end
include ‘mathfunc for/nolist’
include ‘shellsort for/nolist’
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program onf3
this program reads daedalus images from disk then introduces
normal noise then applies the neighborhood replacement filter to
remave the noise then computes correlation between original and
filtered images
include ‘teamdef. for/nolist’
INTEGER#2 cc(262144) !'this is corrupted image
real*B dsum, dsq. corr, S0, SC, POC, 55Q0, §5QC
integer#4 seed, r(512)
byte dd(262144) 'original image
character#20 f ! file name
I A0 0 3030000330 00 30 4630 300030 306 30 0 34 3030300 16 98 1636 3636 T 30 301836 30 3 36 6 3696 36 3646 36203890 6 06
seed=77737
do 1 i=1,512
1 r(1)=(i—-1)#512 'build row table
CHETI0 0000063030 303063 9 30960 36 36 3000 F636 A8 000630 3 36 00 063636 T 36 06 30 36 3 35 9830 30 34 98 9 35 36 36 30 T 90 3 30340 98
i=GT_INITIAL(1.2) !'init term function
call GT_PROMPT('ONF3> ') !terminal prompt
CH303 30303000303 30300 40 30 303606 3636 36 96 363 36 26 3830 36 3030 9 3 30 3 345 35 30T P26 I 3 313 3T e W
a8 i=gt_word(’Disk File Name (SFn(DED). IMG)=", £(1:20))
open{unit=7, file=#f, form=‘'unformatted’, status=‘0ld’, err=88)
read(7, err=88),dd 'GET IMAGE
type *, 'IMAGE= ‘., ¢
close(unit=7)
CRI 3034 3303030 30 08 3648 9620 3536 11 004 0030 3 2098 3040 369030 38 06 36 36 0 40 3590 96 30 36 0 9000 38 3 30 30 33000 3 0
do 7 ir=26.487 'converting image from byte to ix2
do 7 1c=26,487
ip=dd(r(ir)+ic) !oarig byte
ifCip . 1t. O)ip=ip+256 'if 128-255 make positive
ip=ip+300 ‘shift up to get away from O mean gausian noise
7 ce(r(ir)+ic)=ip 'put in contaminated image.tho not yet contam
C 3303030 3030303630 30 303030 96 38 38 006 40 38 3 30010 30 630 30 30 630 30 06 06 6 3 35 3096 04304630 30 08 30 06 36 30 26 30 30 30 90 34 34 00 369 ¢
i=gt_real(’'# Sigmas for bad pixel criterion=’,sig)
i=gt_integ( ‘Neighborhood Size (ie Ix3=1,5x5=2)=",1is)
i=gt_integ(‘'O= Bad Pix Check;, 1=Skip’, ik)
fn=(is+is+1)#(is+is+1) !'n for neighborhood
g=204304. 0 '# of pixels in 452#452 image
ibp=0 '# pixels corrupted
if(gt_ask(‘Want to introduce noise’,none) eq nolgoto &7
1=gt_real(’Enter Percent contaminated’, p)
i=gt_real(’Gaussian mean=’,gm) 'allow any gaussian mean
i=gt_real(‘Gaussian std. dev. ', sd)
CHARRRERBARBRRARRRRERRCONCAMINALE With NOLSEHMMIEIIIIMIII MWK E N
do 66, ir=26,487 ' this loop enter 1-p % gaussian noise mean O, sigma=sd
do &6, ic=26, 487
if(ran(seed). gt. 1. O-p)then
ccl{r(ir)+ic)=nint(gauss{gm,sd)) !'noise
if(ir .ge. 31 .and. ir le. 482)then
iflic .ge 31 .and ic .le 482)ibp=ibp+1 '# pixels corrvupted
end if
end if
b6 continuve
Caannasnnrnnsensnnnnnnndif between orig/contaminat ed®#3mumestenintnnn
67 dsum=0. O
dsq=0 O
do 8 1r=31, 482
do 8 1c=31, 482
ip=dd(r(ir)+ic)
1f¢1p 1t O)ip=ip+256
pd=float(ip+300)-float(cc(r(ar)+ic)) '"diff orig-corrupted
dsum=dsum+pd
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8 dsq=dsq+pd#pd : ¢
dmean=dsum/g 'mean of difference of orig. and contaminated images At
dsd=sqrt((dsq/g)—-dmean*dmean) !stan. dev. of difference
type %, ‘Diff(CONTAM. -ORIG. )Mean=', dmean X
type %, ‘Diff(CONTAM. -ORIG. )Sigma="', dsd X
icp=0 '# pixels corrected ¢
igp=0 '# good pixels disturbed &
nbp=0 ! #noise pixels corrected ?
CHERRRRERRRRREREFTLTER TMAGE 3096385530303 36 336 36 3030 38 38 30 30 3598 36 3 3096 30 30 30 303636 30 30 9630 06 34 36 3¢ T
. do 25 ir=31,482 'detect bad pixels and correct .ﬁ
do 25 ic=31,482
x=float(ccr(ir)+ic)) —
s if(ik .ne. O)goto 23 'skip bad pixel check i
dsq=0. O ;‘
dsum=0. 0 ~
do 21 iro=-is,is !'11x11l window compute mean and sigma for window b,
do 21 ico=-is,is ~
pc=float(cc(r(ir+irol+ic+ico)) ‘get pixel =
dsum=dsum+pc ! sum
21 dsq=dsq+pc#pc ! sum squared —
cmean=dsum/fn ! compute local mean v
csd=sqrt(dsq/fn—-cmean*cmean) 'local stan. dev "
if((x. ge cmean—-sig#csd). and. (x. le. cmean+sig#csd))goto 25 !'good }‘
23 icp=icp+l ! count corrected pixels .
if(x . 1t. 100.0)then el
nbp=nbp+1 'noise corrected '
else '_
igp=igp+1 'good disturbed
end if 2\
dsum=0. 0 h
do 22 iro=-1.,1 !3x3 window filter e
do 22 ico=~1,1 ,}
pc=float(cc(r{ir+irvol+tic+ica)) 'get pixel o
22 dsum=dsum+pc ' summing pixels 1-9 Q)
ccl(r(ir)+ic)=nint{(dsum-x)/8.0) ! neighborhoad replacement ¢
if{float(cclriir)+ic)) .eq. x2digp=igp~1 !same value
25 continue )
CHARRNRRRRERENARERERSOVAIUAte Fi]l CErFRrureitnitditti ittt teinder f%
type #, ‘% corrupted pixels=‘,ibp, ' #corrected pixels=",icp fﬂ
type #, ‘# corrected noise=",nbp, ° #disturbed pixels=’,igp ﬁ‘
$0=0.0 !Sum of orig :x
s¢=0.0 'Sum of filtered . ;
poc=0.0 'cross prod r
$8q0=0.0 ! sum orig squared ;
ssqc=0. 0 'sum filt squared
dsum=0.0 'sum of dif#f :a
dsq=0.0 'sum dif squared .
do 18 ir=31, 482 L
do 18 ic=31, 482 ;
ip=dd{(r(ir)+ic) 'original pixel r:
ifip . 1t. O)ip=ip+256 Ny
po=float(ip+300) "
pec=floatl{cci{r(ir)+ic)) 'filtered pixel
s0=s0+po 'sum of orig ~
sc=sc+pc 'sum of filtered FS
poc=poc+po#pc 'sum cross product ;:
$5Qo=5sqo+poRpo 'sum orig squared F}
ssqc=ssqc+pcHpc 'sum filtered squared i
dsumsdsum+(pa-pc) 'sum of diffs =3
18 dsq=dsq+(po-pc)#(po-pc) 'sum of dif squared w
cansanpnnennnnncompute & display results of evaluatiron# st uprsutiitansts s
dmean=dsum/g 'mean of difference of original and filtered images X
dsd=sqrt((dsq/g)-dmean#dmean) 'stan dev of difference fe.
corr=(g®poc-satsc)/(sqrt((gssqo-so*so)*(grssqCc~scksc))) F\
type #, ‘CORRELATION(original, filtered)=",corr f\
type #, 'Diff(FILTERED-ORIG) Mean=', dmean {j
type #, 'DifF(FILTERED-ORIG) Sigma="',dsd, ' [ b
type », ‘Neighborhood Replacement FILTER NOISE=',p '
type #, ‘Gaussian NOISE Mean=',gm, ' NOISE Std Dev=', sd
call exit »
end Ny
include ‘mathfunc. for/nolist’ E:
o
™
€

c=-7
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program onf4
this program reads daedalus images from disk then intraduces
normal noise then applies criss—cross filter to remove the noise
c then computes correlation between original and filtered images
include ‘teamdef. for/nolist’
INTEGER#2 cc(262144) 'corrupted image
integer#4 seed.r(512),rt(4)
real#8 dsq.dsum, corr, 50, SC, pOC, S$QO 58qC
byte dd(262144) !original image
character*20 £ !file name
data rt/512, 1,513, 511/
S0 300 33038 966 330306 30030606 3030303 S0 3300 3396 306 36 HE 36T 3606 33000 38 2090 30962
seed=77737
do 1 i=1,512
1 r€{i)=(i-1)#512 ' build row table
C 9698303 1 40 3 9646 36 3¢ 3 36 36 36 3 3 396 3 36 3 36 36 3 36 536 90 3698 16 35 35 96 36 36 6 6 96 35 D6 96 96 96 36 36 35 35 B¢ 38 36 6 H436 3 066 4 96 2 36 9
i=GT_INITIAL(1,2) !init term function

an

call GT_PROMPT( 'ONF4> ‘) ! terminal prompt
3383363064 36 30 369630 36 3638 3636 369630 36 3638 96 36 36363038 3630 06 6 3030 3 363036 36 363896 38 996 36 36 96 369636 364636 34 36283096 34 3¢
88 i=gt _word{’'Disk File Name(SFn(DED). IMG)="', £(1:20))

open{unit=7, file=f, form='unformatted’, status=‘0ld’, err=88)
read(7, err=88),dd 'GET IMAGE
type #, 'IMAGE= ‘, ¢
close(unit=7)
CHI 6 3630 30303033640 34 3836 36 36 30306 38 6303 36 363 046 90 6 38 36 33603 390 38 9090 334 3 990 46 90 9638 36 3 6 00
do 7 ir=23,490 !converting image from byte to i#2
do 7 ic=23,490
ip=dd(r(ir)+ic) 'orig byte
if(ip . 1t. O)ip=ip+256 'if 128B-255 make positive
ip=1p+300 'shift up to get away from O mean gausian noise
7 cc(r(ir)+ic)=ip 'put in contaminated image.,tho not yet contam
CHE 00030969630 30963030 3030 0016 30 3636 303630 3038 36 3698 3030963636 96 26 36 26 36 36 3636 36 36 3 3630 3620 36 36 3630 36 30 30 30 9030 300 4 ¢
i=gt_real(’# Sigmas for bad pixel criterion=’,sig)
i=gt_integ(’'Neighborhood Size (ie 3x3=1: 5x5=2)=',is)
i=gt_integ(’0O= Bad Pix Check: 1= Skip=‘,ik)
fn=(is+is+1)x(is+is+1) 'n for neighborhood
9=204304. 0 ‘# of pixels in 452#452 image
ibp=0 '# pixels contaminated
if(gt_ask(’Want to introduce noise’,none). eq. no)goto 67
i=gt_real(‘Enter Percent contaminated’, p)
i=gt_real( 'Enter Gaussian Mean’,gm)
1=gt_real{‘Gaussian std. dev. ‘', sd)
Cruutuitnnnitnnttn ittt tCONTAMINATE WITH NOISE #3333 3 3 5 0 3 3 3% 3 3 % 3% 3¢ 3% 3 3% 3 % % %
do b6, ir=23,490 ! this loop enter 1-p % gaussian noise mean O, sigma=sd
do &6, ic=23,490 'corrupt whole picture
if(ran(seed). gt. 1. O-p)then
cc{rdir)+ic)=nint(gauss(gm,sd}) !'noise
if(ir .ge. 31 .and. ir .le. 482)then
if(ic .ge. 31 .and. ic .le. 482)ibp=ibp+1 '# pixels corrupted
end if
end if
&6 continue
CM AT 0030 369600 30003 36 20960630 36 3620 303090 06 0 00 500 362630 06 36 00 00 46 36 9630 06 26 30 300636 9030 2606 3000 3630 9040 41 36 3630 36 90 4 0
&7 dsum=0. 0
dsq=0. 0
do 8 1r=31, 482
do 8 ic=31, 482
ip=dd(r{ir)+ic)
if(ip 1t O)ip=1p+256
pd=float(1p+300)-float(cc(r(ir)+ic)) !'dif orig-~contam
dsum=dsum+pd ' Sum of diffs
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dsq=dsq+pd*pd ! sum of diff squared
dmeanvdsum/g 'mean of difference of orig. and contaminated images
dsd=sqrt((dsq/g)-dmean#dmean) !'stan. dev. of difference
type %, ‘Diff(CONTAM. ~-ORIG. )Mean= .dmean
type %, ‘Diff(CONTAM. ~ORIG. )Sigma="', dsd
C***iiiii****i*iﬂFILTER!!Q&&*{&&{*{&&&{i****#fii*i*i&&l*i«*&&i**&&a
icp=0 '# pixels corrected
nbp=0 !'# noise corrected
igp=0 !'# good disturbed
ip=1
do 25 ir=28+ip-1,485-ip+1 ‘detect bad pixels and correct
do 25 ic=28+ip-1.485-ip+1
x=float(cc(r(ir)+ic))
if(ik .ne. O)goto 23
dsq=0.0
dsum=0. 0
do 21 iro=—-is,is ! fn window campute mean and sigma
do 21 ico=-is.is
pc=float(cc(r{ir+irol+ic+ico)) 'get pixel
dsum=dsum+pc ! sum
dsq=dsq+pc#pc !sum squared
cmean=dsum/fn ‘compute local mean
csd=sqrt(dsq/fn-cmean#cmean) !local stan. dev
if((x. ge. cmepan—-sig#*csd). and. (x. le. cmean+sig#csd))goto 25 !goad
p2=float(cc(r(ir)+ic-rtlip)))
p3=float(cc(r(irv)+ic+rt(ip)))
xx=x !'save
if(p2 .le. p3)then !x p2 p3
if(p2 .ge. =x)goto 117 !'x p2 p3
if(x .le. p3)goto 25 !p2 x p3
x=p3
else 'x p3 p2
if(p3 .ge. x)goto 116 'x p3 p2
if(x . le. p2)goto 25 !p3 x p2
x=p2 !p3 p2 x
end if
icp=icp+1l 'count corrected pixels subtract from contaminated
ce{r(ir)+ic)=nint(x)
if(xx .1t. 100 0O)then
nbp=nbp+1
else
if(x ne. «xx)igp=igp+l 'pixel disturbed
end if
continue
type #, ‘% corrupted pixels=',1bp, ' # corrected pixels=‘,1icp
type #, ‘# corrected pixels=',nbp, ° # dasturbed pixels=’, igp
ip=ip+1
if{(ip . 1t. S)goto 9
CHERERABERRRREARRERAROVATUALE TOSUL LS HRII IS NI NI IR SRR NN
50=0.0 'Sum of orig
§c=0.0 'Sum of filtered
poc=0 0 !'cross prod
s5qo=0. 0 !sum orig squared
ssqc=0.0 'sum filt squared
dsum=0.0 ' sum of d1ff
d$q=0.0 !sum dif squared
do 18 ir=31, 482
do 18 ic=31, 482
ip=dd(r(ir)+ic) 'original pixel
if(ip .1t O)ip=1p+25H6
po=float(ip+300)
pc=float(cc(r(ir)+1c))
sa=so+po 'sum of orig
sc=sc+pc 'sum of filtered
poc=poc+po%pc 'sum cross product
$5q0=$5q0+po#po !sum orig squared
ssqc=ssqc+pc*pc 'sum filtered squared
dsum=dsum+(po—pc) 'sum of diffs
dsq=dsq+{(po-pc)#{po-pc) 'sum of dif squared
dmean=dsum/g 'mean of difference of original and filtered i1mages
dsd=sqrt((dsq/g)-dmean*dmean) 'stan dev of difference
corr=(g#poc-so#sc)/(sqrt((g#*ssqo-sonso)*(gessqc~scH#sc)))
type #, ‘CORRELATION(original, filtered)="', corr
type #, ‘Diff(FILTERED-ORIG) Mean=', dmean
type #, ‘Diff(FILTERED-ORIG) Sigma=',dsd, '
type », 'CRISS-CROSS FILTER NOISE=‘,p
type #, ‘NOISE Mean=',gm, ' NOISE Std dev=', sd
call exit
end
include ‘mathfunc for/nolist’
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biweighted 3x3 filter compute weighted mean from input arvay

X
)

N subroutine biweight(med, xhat) )
& real®4 med(#), xhat
[4 # of elements in med=9, median=med ()
X sp=(med(7)-med(3))/1. 349 'compute standard deviation from quarti
3 if(sp. eq. O)sp=1.4B3 !cant have O sd »
& s=5p*5. O . t
N c calculate initial xhat valvue H
N s1=0.0 ! sum ‘ y
> $2=0.0 'n '
do 10 i=1,9 ! throw out outliers > O std devs s
if(abs(med(i)-med(5)) .gt. s)goto 10 - -
st=gl+med(i) !'sum of non-outliers
)y s2=s24+1. 0 'n of noun-outliers t
n 10 continue §
, xhat=s1/82 !'init computed mean
- s=s+sp '6. 0 std dev - )
- §1=0.0 *sum of weighted non-ovtliers [y
~ 52=0.0 'sum of weights
B do 30 i=1.,9
x=(med(i)—xhat)/s
o X=X#X
- if(x.gt. 1.0) x=1.0 y
< wp=(1. 0—x)# (4. O-x) }
. si=sl+wp#med(i)
o 30 s2=s2+wp &
% xhat=s1/s2 i
! end p
L2223 1222222222 2T LTI RL L LT L LR X 222 8 2 3L TR T
. REAL FUNCTION GAUSS(MEAN, DEV) .
.. * computes a random numbey from a normal (gaussian) distribution with .
-, * the given mean and deviation ’
-~ real mean,dev:ran, sum, xx, set_gauss_seed "
{~ integer iran, i, idum :
R data iran/-1/ )
- * y
sum=0. 0
do i=1,50 ~
k- sum=sum+ran(iran) .
- enddo ’,
»: sum=sum/50 O :
- xx=sqrt(12 O % H0 0O) % (sum-0 5) -
- gavss=xx#dev + mean »
~ return »
*+ %
o entry set_gauss _seed(rdum)
o iran=i1dum '
>, set _gauss_seed=0 O Ry
(Y return
< end »
f c shell sort 3
'y [4 sort the real array elements x(1) to vrin)
4 ascending order
4
K subroutine shellsoct(x,n) .
) real#4 x(#), temp '
} integer#4 1.,n,ndel to . :
- logircal inordr .
O C "
. ndelta=n ‘
10 1findelta gt 1)then
_ ndelta=ndeltas
20 1nordr: true
“ do 30, 1=f,n-ndelta v
N 1F(x(1) gt xCidndelta)) then o
n temp=x(1) o
x(1Y=x(1+ndelta)
x{(1¢+ndelta) -Lemp
' inordr= falue —
end 1 f
. 40 contanue o ¥
R 1£¢ not 1novdre) qoto ¢ .
e gotu 10 -
. end 1f -
o end "
- ~d
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‘program onfb

include ‘teamdef. for/nuligt’
INTEGER#Z cc(262144), sav, ino ! this is corrupted image

real med(9)

real#8 dsum. dsq

integer#4 seed, r(512)

byte dd(262144), bb (2622144), s(2), s (&) !ariginal image,blank image
characters#2’0 £ ! file name

equivalence (s, sav), (inov, ss)

C 333 33 30 W30 I 336 3 35 35 3030 35 96 34 38 9 30 4 H 30 3030 B 36 3 36 303 VA K IF R0 S5 B 3 20 36 3¢ 36 26 6 3490 3 b 90

seed=77737
do 1 i=1,512

1 r(i)=(i—-1)#512 ' build row tiable
C 35 338 3690 25 23636 309630 3636 55 96 36 56 38 36 350 3000 0 38 33638 4638 3030 3636 56 T 0536 363 5 36363 2 30 30 30 W 3040340963598 N8 9

do i=1, 26144 'clear noise mank

bb(i)=0
end do
i=GT_INITIAL(1,2) !'init term function
call GT_PROMPT(‘ONFB> ‘) !terminal prompt

call ipinit tinitiate deanza

C 34040 32 3030 36 2035 308 36 3036 33640 36 263048 3096 4 31 N9 D30 3036636 J 00 3030 3098 3136 96 46 360 4090 KU 4000
a8 i=gt _word(‘Disk File Name(SFn(DED). IMG)=‘, £(1:20))

opentunit=7, file=f, form="unfurmatted’, status=‘ald’, err=886)
read(7, err=88), dd ! GET IMAGE

close(unit=7)

call display(dd, 262144, 511,0,0) !display raw image

© 33638 346 36 36 98 3 3 396 20 30 36 9 9 336 36 34 35 70 698 6 3H3F 338 36 W36 360 35 8 3 3 3 I T Ak 3 IE S0 I I SE 6 369 T 3 A

do 7 ir=26,487 !converting image from byte to i#x2
do 7 ic=26, 487
ip=dd{r{ir)+ic) ‘orig byte
iflip . 1¢t. O)ip=ip+256 !'it 128-255 make positive
ip=ip+300 '!shift up to get away from O mean gausian noise
7 celr({ir)+ic)=ip !'put in contaminated image, tho not yet contam
b 3634 2033038 303630 6 30 30 3 36 36 30 35 56 38 3638 30 38 36 346 31 3440 396 30 K 36 5 35 3090 3630 3036 30 000 0140 3698 3000 36 3000 46
i=gt_real(’# Sigmas for bad pixel criterion=’,sig)
i=gt_integ(’'Neighborhaod Size (ie Ix3:=1,5x5=21=", is)
fn=(is+is+]l)n(is+is+1l) 'n for neighborhood
g=204304.0 '# of pixels in 452#452 image
ibp=0 '# pixels corvrupted
ift(gt_ask(’Want to introduce noise’,none). eq. nolgoto 67
i=gt_integ(’Color of Noise=’, ino)
i=gt_real(’Enter Percent contaminated(10%=.1)",p)
i=gt_real(‘Gaussian mean=',gm) !3llow any gaussian mean
i=gt_real(‘Gauvssian std. dev. ‘., sd)
CHERERRRRRERERRBRRERRCONtamINate With 11015 @I 10319096 3320563963696 96 369
sav=254

do &6, ir=24,487 ! this loop enter 1-p % gaussian noise mean O, sigma- sd

do b4, ic=26, 487
if({ran(seed) .gt. 1. 0-plthen
cc(r{ir)+ic)=nint(gavss(gm, sd)) !noise

dd(r(iv)+ic)=ss(1) !‘put noise in picture color selected (inal
bb(r(ir)+ic)=s(1) !put noise in blank image (mask) (inn)

if(ir .ge. 31 .and. ir .le. 482)then

if(ic .ge. 31 .and. ic .le. 482)ibp=ibp+!l '# pixels corrupted

end if
end if
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Cadtdndtaei ittt nnritntntdif between orig/contaminated® e w33 58 %46 3 3
&7 icp=0 '# pixels corrected

igp=0 !# good pixels Pixed

nbp=0 '# bad pixels fixed

call displayl{dd,. 262144, 511,0:.0) 'display neoise

if(gt_ask(’Display Blank’,none). eq. YES)call display(bb, 262144, 911, 0,0}

CHNH RN RN RERRURE TLTER IMACE #5088 00 K03 5000 904 B0 334036 30 W30 36 3634 36 30 330 336 0 38 9 36 3696 36 3% %

n
[ 8]

a5
CHANBBERBRERFABELCENpvVAIUAOEE  F1 1661030463038 3038 e 36 3095 % 36 3 4010 36 30 36 46 3¢ 150 36 %95 36 3¢

do 25 ir=31,482 'detect bad pixels and correct
do 25 ic=31, 482
x=float(cc(r (ir)+ic))
ds¢=0. 0
dsum=0. O
do 21 iro=-is,is !1ix1! window compute mean and sigma for window
do 21 ice=-is,is )
pe=float (ccirliv+ivol+tic+ical)) tyet pixel
deum=dsumtpe ! sum
dsq=dsq+pcupc ! sum squaved
cmean=dsuym/fn 'compute local mean
csd=sqrti{dsq/Ffu—-cmeanitcmean) ! local stan. dev
if({x. ge. cmean—sig#csd). and. (x. le. cmean+sig#csd))ygnto 25 ! yood
icp=icp+l ‘commt corrected pixels ’
ict=0
do 22 ivo=-~1,1 !textract 313 window
do 22 ico=-1{,1"
pc=float(cc(r(ivr+ivol+ic+icol) 'get pixel
ict=ict+l
med(ict)=pc
call shellsorti{med, 7}
sav=nint{med (3))-300 !median pixel
if(sav . 1t. Olsnav=0
dd(r{ir)+ic)=5(1) 'corvrected pixel in orig pic
iflcc(r(ir)+ic) . 1t. 200)then !bad pixel fixed
nbp=nbp+l !'bad pixel fixed ’
bb(r(ir)+ic)=0O 'black pixel
else
igp=igp+l !good pixel merssud up
bb(r(iti+icl=s(l) 'yeillow pixel
end if
continue

¢all display(dd, 262144,511,0,0) {display corrected pix
type #, ‘# corrupted pixels=’,ihp, ’ dcorvected pixels=’,icp
type * ‘# corrupted pizels fixed=’)nbp, ‘#good made bad=’, igp
if(gt_ask(’/Display Blank’,nanc). eq. YES)then

call display(bb, 262144, 511,00, 0}
end if

cheptwrnrntrttcompute & display vecults of evaluati om0 368 ket e

ARSI SRS AN

type *, 'FILTER NOISE:’,p

type ¥, ‘Gaussian NOISE Mean=', gm ‘ NOISE Std Dev-’, sd
if(gt_ask(’Quit’,none). eq. YES)call exit !gives time to display imagr
end

include ‘mathfunc. for/notisi’

include ‘shellsort. for/nulist’

include ‘ipinit. for/nolist’
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